

失敗しないコーティング選び トライボロジーラボ 受託試験・分析のご案内 MY MARKANNA MALIAN

www.nanocoat-ts.com

NANOCOAT ハンドブック No.4

トライボロジーラボのご紹介

トライボロジーラボは、旧立川飛行機である立飛グループが開発するJR 中央線立川駅北側の複合施設エリア内にあります。自社内設備のほか近隣 の東京都立産業技術センター多摩テクノプラザの測定・分析機器を活用し て、表面改質・材料・トライボロジーのスペシャリストがお客様の問題解 決のための受託試験・受託分析サービスを提供します。 また弊社グループ本社であるフランスHEF 社が参画するICE-T(エンジン トライボロジーイノベーションセンター)での各種エンジン試験も可能で す。

<トライボロジーラボの業務内容>

★ 最適表面処理・被膜材質選定のためのトライボロジー試験受託

- ★ 表面処理トラブルの原因調査・不良解析
- ★ 品質管理特性(膜厚分布・工程能力など)の調査
- ★ 要求仕様に適合する表面改質処理・被膜材質の開発

	< お問い合わせ先 >
	042-519-7504
	042-519-7584
\bowtie	tribo@nanocoat-ts.com

ページ

立飛ビル 3 号館 407

JR 立川駅北口より 多摩モノレール 立川北→泉体育館 徒歩8分 立川バス村山団地行き約10分 立飛本社前下車

トライボロジーラボ設備

目 次

トライボロジーラボのご紹介	2
ラボスケールトライボメータ 基礎実験用 摩擦摩耗試験機 AP TRIBOMETER	3
工業用トライボメータ 多目的 摩擦摩耗試験機 HEF TRIBOMETER	5
非接触 表面粗さ/表面形態測定 白色干渉顕微鏡	9
非破壊・非接触 DLC 膜厚測定 分光干渉式 DLC 膜厚計	15
表面清浄度/仕事関数 測定器 コロナサーフ	19
樹脂離型力 測定試験	21
コーティング不良解析サービス	23
ラマン分光による DLC 構造評価	24
フランス ICE-T エンジントライボロジーイノベーションセンターのご紹介	25

2

ラボスケール トライボメータ 基礎実験用 摩擦摩耗試験機 AP TRIBOMETER

ラボスケール トライボメータ 基礎実験用 摩擦摩耗試験機 AP TRIBOMETER

ラボスケール トライボメータ アントンパール製 TRIBOMETER

■歴史 1980年代にスイス時計研究所 LSRH で開発されたトライボメータです。世界中 に多くの実績がありトライボメータの世界標準になっています。メカニズムの 基本設計は変わっていませんが、より多彩な試験モードに対応し、先進のデー タ解析機能に進化しています。

ダブル変位センサーにより測定アームの熱膨張を補正し正確な摩擦係数の測定 が可能です。

*ストライベック曲線の取得、摩擦面や摩耗粉の分析はオプションになります。 提出データについては事前のお打ち合わせで決めさせて頂きます。

アントンパール製 TRIBOMETER 外観

ラボスケール トライボメータ アントンパール製 TRIBOMETER

■ 試験モード

往復動加熱ステージ

標準在庫ボール 鉄鋼: SUJ2,SUS440C,SUS304 AI 合金: A5052 Cu 合金: 純銅, 真鍮 超硬合金, ガラス (BK7) セラミック: SiC,Al₂O₃ 樹脂: PP,PE,PC,POM,PA66, PEEK,PMMA,PTFE

回転油中

■ 試験機仕様

諸元		仕様	備考		
試験力(垂	垂直荷重)	最大 60 N 最小 0.5N	おもり方式(標準おもり:0.5/1/2/5/10 N)		
摩擦力		最大 10 N	精密板ばねの変位を変位センサーで検出		
摩擦力 AD 翻	変換分解能	0.03 mN	ダブル変位センサーで熱膨張影響を補正		
回転速度		0.3 ~ 1500 rpm	ボールホルダー Φ6/6.35 mm		
回転運動	回転半径	$0.5\sim35~\mathrm{mm}$	ピンホルダー Φ6 mm		
	回転トルク	450 mN.m	プレートホルダー 4x4mm		
	ストローク	最大 60 mm	回転試料 最大 Φ60 x 20t mm 分布動計料(ドライ) 博進 20 x 50 x 20t mm		
直線往復動	速度	最大 370 mm/s			
	周波数	$0.01\sim 8~{ m Hz}$			
加熱試験	(ドライ)	最大 200℃	往復動のみ , 加熱エリア 25 x 45 mm		
油中試験	回転	室温	標準試料ホルダー Φ20/25/30 mm		
加宁叫祝	往復動	室温~120℃	標準試料ホルダー 最大 24 x 47 x 10t mm		
試験雰囲	気制御	相対湿度 15~95%	6, Ar,乾燥窒素などの摺動部への吹きつけ		
対応	規格	ASTM G99, ASTM C	5133, DIN 50324, ISO 18535		

3

工業用トライボメータ 多目的 摩擦摩耗試験機 HEF TRIBOMETER

工業用トライボメータ フランス HEF 製 HEF TRIBOMETER

■歴史 1953 年創業のフランス HEF 社が 1960 年代からトライボロジーの基礎研究に 使用してきた摩擦摩耗試験機です。基本設計を保持しつつレトロフィットを繰 り返し、現在でもエンジンベンチ試験前の DLC と潤滑油の組み合わせ評価や 各種接触形態での摩擦摩耗特性評価に使用されています。

高い剛性のメカニズムとユニークな摩擦力測定機構により、カム/タペットや カム/フィンガーフォロワー等の高面圧接触をシミュレーションします。

試験機メカニズム模式図

試験機 測定ヘッド外観

工業用トライボメータ フランス HEF 製 HEF TRIBOMETER

■ 試験モード * 下記以外にも種々の試験モードが可能です。お問い合わせください。

接触形態	点	妾触	線接触	面接触
試験模式図 試料寸法	< クロスシリンダー リング	ボールオンプレート マーレオンリング ボールオンリング ボールΦ6 ~ 10mm リング Φ35mm	ブロックオンリング リング Φ35mm シャフトインブッシュ ブッシュ ID シャフト OD Φ 15 ~ 21mm	ţ.
面圧範囲	500 ~ 2400 MPa	1000 ~ 3000 MPa	$50\sim 500$ MPa (B on R) 0.1 \sim 2.3 MPa (S in B)	0.01 ~ 5 MPa
試験環境	ドライ・油浸漬 ~8	0℃・グリース塗布		

* 面圧範囲は鋼同士の接触の場合の値です。
■ 試験機仕様

諸元 仕様 最大 10/1000/2000 N 試験力 Fn レンジ 接線力 Ft レンジ 最大 20/50/200/500 N 接線カロードセル直線性 1% フルスケール 回転速度 $40 \sim 3000 \text{ rpm}$ 回転運動 (リング) 周速度(Φ35) $0.07 \sim 5.5 \text{ m/s}$ ストローク $0 \sim 20 \text{ mm}$ 直線往復動 速度 $0 \sim 15 \text{ mm/s}$ 試験片 サイクル $0 \sim 1.5 \, \text{Hz}$ 油量 1.5 L (最大 2L) 油中試験 油温度 室温~120℃

油中浸漬試験

ブロックオンリング

クロスシリンダー

ボールオンリング

シャフトインブッシュ

工業用トライボメータ 多目的 摩擦摩耗試験機 HEF TRIBOMETER

エンジン油中でのクロスシリンダー 一定荷重試験:各種 DLC 被膜の比較

■ まとめ 市販エンジン油 0W-20 中の高面圧(ヘルツ接触圧力 0.9GPa)下の境界潤滑領 域でのクロスシリンダー摩耗試験において、ta-C コートピンは a-C:H コートピ ンと比較し約 94%の比摩耗量低減を達成しました。

> 無処理ピン/ a-C:H リングの組み合わせにおいてピン表面に MoDTC 添加剤由 来と考えられる Mo-C 化合物の生成が確認されました。a-C:H と ta-C の摩耗速 度の違いに Mo-C 化合物による DLC の摩耗メカニズムが関わっていると推測さ れます。

> 試験中の平均摩擦係数は、無処理同士で 0.12、a-C:H の組み合わせで 0.05、 ta-C の組み合わせで 0.07 でした。本試験での a-C:H と ta-C の摩擦係数差異は、 DLC の添加剤吸着効果の差異によるものではないと推測されます。

試料のセット状況

試料寸法	ピン Φ6.3 リング Φ35
試験力	50 N
ヘルツ接触圧力	0.9 GPa
リング周速度	300 mm/s
試験時間	30 min
試験環境	市販エンジン油 (0W-20) 80℃

各種組み合わせによる比摩耗量と平均摩擦係数

エンジン油中でのクロスシリンダー 一定荷重試験:各種 DLC 被膜の比較

■ 摩耗痕の観察:金属顕微鏡と白色干渉顕微鏡

白色干渉顕微鏡 新東Sプレシジョン製 OPTIFIS

■ 測定原理

光源から出た白色光は対物レンズ内で2つに分かれ、参照ミラーと試料表面へ 向かい反射されます。この2つの光は反射後に同一光路に戻り重なり合うこと で干渉縞が得られます。干渉縞は2つの光の距離(光路)の差の情報を持って おり、対物レンズをZ方向に移動させながら撮影した際の画面ごとの干渉縞の 変化を解析することにより、試料表面の凹凸形状が得られます。 また、干渉縞を解析する方法として、次の2つが用いられます。

①垂直走査法

白色光源を使用した場合、測定面と参照ミラーの光路差がゼロの時、干渉縞の コントラストが最大となります。対物レンズを Z 方向に連続的に移動させて画 像を取得し、各画素において干渉縞の輝度値が最大になる Z の位置を求めるこ とで測定対象表面の相対高さを求める方法です。

②位相シフト法

対物レンズを Z 方向に 1/8 λ(λは使用している光源の中心波長)ずつ 3 回動か して測定面と参照ミラーの位相差を求めます。各画素の位相差を計算処理で繋 ぎ合わせて相対高さを求める方法です。干渉縞が面内全体に広がっている平滑 面の測定に適しており、垂直走査法より高いサブナノレベルの高さ測定分解能 を得ることができます。ただし、隣接する各ピクセル間が連続かつ滑らかにつ ながっている面でのみ使えるため、主に光学部品などの高精度に研磨された面 の表面状態の計測に用いられます。

測定原理図 (新東Sプレシジョン社カタログより転載)

白色干渉顕微鏡 新東 S プレシジョン製 OPTIFIS

最大測定物サイズ	201W×104D×90H m	m
最大測定物重量	2 kg	
高さ計測範囲	250 μ m	
Z 軸測定分解能	垂直走査法:1nm	位相シフト法:0.1nm
段差測定繰返し精度	0.5%(垂直走査法、8	μm段差測定時)
対物レンズ倍率と視野	・XY 方向分解能の関係は	下表のとおりです。

対物レンズ倍率	5倍	10 倍	20 倍	50 倍
視野 (mm)	3.75x2.72	1.88x1.36	0.94x0.68	0.38x0.27
XY 方向分解能(µm)	2.31	1.17	0.59	0.23

■ 規格面粗さJISB0681-2:2018 線粗さJISB0601:2001 JISB0671:2002

■什 様

(ISO 25178-2) (ISO 4287:1997) (ISO 13565-1:1998)

白色干涉顕微鏡本体

非接触 表面粗さ/表面形態測定 白色干渉顕微鏡 White Light Interferometer

触針式表面粗さとの比較/2次元・3次元粗さの比較:コーティング試料

■ 実験方法

SKD11 パンチの外周面について、従来の触針式表面粗さ測定器による 2 次元粗 さと白色干渉顕微鏡(WLI)による 2 次元 /3 次元粗さの比較をおこおこないま した。無処理は研削面ですが、コーティングは陰極アーク方式によるドロップ レットが多い表面です。表面粗さの性状の違いと測定方法の違いによって、各 表面粗さパラメータがどのように変化するかを見るのが目的です。 各方法の測定パラメータは以下のとおりです。

測定方法		評価領域	カットオフλc	カットオフλs	
触針式表面粗さ測定器		さ測定器	4 mm	0.8 mm	_
WLI 20 倍 2 次元		0.94 mm	0.08 mm	2.5 μm	
WLI	20 倍	3 次元	0.94x0.68 mm	0.25x0.25 mm	_

無処理 SKD11 パンチ表面の 3 次元表面粗さ(フィルター処理後)

AlTiN/CrN コートパンチ表面の3次元表面粗さ(フィルター処理後)

触針式表面粗さとの比較/2次元・3次元粗さの比較:コーティング試料

- ■実験結果 無処理品では、算術平均粗さ Ra/Sa, 突出し山部高さ Rpk/Spk は触針式と WLI でほぼ同等の値が得られた。3 次元 WLI では最大高さ粗さ Rz/Sz がやや大きく なった。コート品では、3 次元 WLI で Sa, Spk が小さく、Sz が大きくなる傾 向が見られた。
- ■所見 WLIでは、なめらかな急角度面の測定ができない場合もあり、ドロップレット 測定感度について、XY 分解能も考慮し検討が必要です。また成膜時のイオン ボンバードによる表面平滑効果も考慮が必要です。

11

各種トライボロジー試験後の摩耗痕観察と摩耗量測定

■説明トライボロジー試験後の摩耗痕の形態をnmレベルの精度で観察および測定できます。さまざまな形状の試料の摩耗量を簡単に計算できるのも特徴です。 測定領域より大きな摩耗痕の場合は、連続した画像をスティッチング処理により結合して測定することができます。

材質に関する情報は得られませんが、摩耗試験の接触界面や摩耗粉の形態についての詳細な情報が得られます。

		0.0	
	•••	e 4 -	
パラメータ	й (î	¢ a c 単位	
パラメータ 谷祖城	• 位 339718	中位 pm ²	
パラメータ 谷積岐 深さ	です。 値 339718 5.54	中位 pm ² pm	

クロスシリンダー摩耗試験のピン摩耗量の測定 (左:摩耗痕の3次元画像,右:ピン形状除去処理後の摩耗体積測定)

成膜品の不良解析:欠陥形態の観察と測定

■ ドロップレット除去磨き後のピンホール欠陥の大きさ測定

陰極アーク法 Cr-N コーティング 2.0μm を成膜後ドロップレットを研磨で除去し WLI にて表面形 態の観察およびピンホール欠陥の大きさ測定をおこないました。 測定領域内でのピンホール深さはおよそ 0.5μmでした。

■ 自動欠陥検査機で不良品判定された欠陥の観察

自動欠陥検査機で不良判定された欠陥の形態を観察し欠陥の要因を考察します。被膜を除膜処理 した後、再度欠陥を観察することにより要因解析が容易になります。

DLC 被膜欠陥の 3 次元画像 (左:除膜処理前,右:除膜処理後)

非破壊・非接触 DLC 膜厚測定 分光干渉式 DLC 膜厚計

分光十渉式 DLC 膜厚計 開発:オプトエレクトロニクスラボラトリ(OEL)

(大阪大学レーザー科学研究所発ベンチャー)

非破壊・非接触 DLC 膜厚測定 分光干

分光干渉式 DLC 膜厚計

分光干渉式 DLC 膜厚計

- ■測定原理 試料表面に近赤外光を照射し、DLC表面で反射する光とDLC/下地層界面で反射する光の干渉光を分光計で分光し波長スペクトルを求めます。別途屈折率計で測定した屈折率を入力しスペクトルをフィッティング解析し膜厚を求めます。膜厚が厚いほど山谷の数が多いスペクトルが得られます。
- ■特徴 ☆ 非破壊・非接触なので実体製品の測定が可能です。
 ☆ DLC の付きまわり性や膜厚分布が短時間で測定可能です。
 ☆ 自動 XY ステージでのインデックス測定が可能です。
 ☆ 穴の内面の測定も可能です。(穴径Φ12 mm 以上)
- 仕様 適用膜厚範囲 0.5 ~ 20 µ m
 測定精度 ±5%
 分光波長範囲 900 ~ 1700 nm

分光干渉式 DLC 膜厚計システム外観

屈折率測定器

膜厚測定ヘッド

分光干渉式 DLC 膜厚計の測定例:a-C:H 被膜-カロテスト法との比較-

■実験内容 ブロック試験片の回転治具への取付方法を変えて同一バッチにて処理した下地 層を有する DLC(a-C:H)被膜の測定データです。取付方法 1 では試験片が治 具に埋め込まれているのに対して、取付方法 2 では試料は成膜空間に飛び出し ているため成膜速度が速くなっています。

分光干渉法-カロテスト法 膜厚相関図

a-C:H 膜厚 2.5 µm の分光干渉スペクトル(黒:測定値,赤:解析値)

非破壊・非接触 DLC 膜厚測定 分光干渉式

分光干渉式 DLC 膜厚計

非破壊・非接触 DLC 膜厚測定

分光干涉式 DLC 膜厚計

分光干渉式 DLC 膜厚計の測定例:a-C:H 被膜-膜厚分布の測定-

■実験内容 Φ20mm 厚さ 6mm の丸形試験片と、30mm 角厚さ 1mm の角形試験片の面内 膜厚分布を XY ステージにてインデックス測定し膜厚分布を解析しました。

Φ20mm 厚さ 6mm の丸形試験片の面内膜厚分布

中心部近傍から端部にかけて膜厚が大きくなる傾向が確認されます。プラズマ CVD プロセスによるエッジ効果(放電の集中)、成膜時のセッティングによって生じてい る膜厚の差異であるものと思われます。

30mm 角厚さ 1mm の角形試験片への DLC コーティングの面内膜厚分布

プラズマを利用した成膜プロセスでは製品に電圧を印加するため、コーナー部の電 流密度が高くなり膜厚が厚くなります。これを避けるためには製品の保持治具を工 夫して電界を調整する必要があります。上記は治具を使用しない場合でコーナーの 膜厚増加が顕著です。XY 自動ステージを用いて 1mm 間隔で取得した膜厚データの 分布測定例です。

分光干渉式 DLC 膜厚計の測定例:a-C:H 被膜 – パイプ内面膜厚の測定 –

■実験内容
 内径Ф40.3mm(肉厚 4mm)長さ 40/80/120mm の 3 種類のステンレスパイプの両開口から DLC(a-C:H)被膜を成膜し、内径の軸方向の膜厚分布を測定しました。測定ピッチは長さ 40/80mm が 2mm、長さ 120mm が 4mm です。

サンプル長軸方向への DLC 被膜つきまわり性の差異が顕著に確認されます。開口径 に対して穴長さが 1 倍のものにおいては約 40%の、 3 倍のものにおいては約 85% の中心部での膜厚減少がそれぞれ確認されます。

形状もののコーティング膜厚評価の蓄積によって、より高精度な成膜技術を、複雑 な形状を有する製品へフィードバックするため、日々技術力の向上を行っています。

長さの異なるパイプ内面の軸方向膜厚分布

表面清浄度/仕事<u>関数 測定器____</u>フロナサーフ[®]__ CORONASURF

主な応用分野

☆ 洗浄プロセスの評価

表面清浄度/仕事関数 測定器 コロナサーフ® CORONASURF

表面清浄度/仕事関数 測定器 コロナサーフ[®] CORONASURF

■歴 史 1990 年代にフランス HEF で開発された原型をライセンスにもとづき国産化し ました。ケルビンプローブによる精密な仕事関数(表面電位)測定とコロナ放 電による電荷付与を組み合わせたユニークな測定器です。 仕事関数測定による表面の電子構造の測定と、表面汚染/酸化層による帯電特 性の測定を組み合わせて、表面の汚染や酸化等を評価します。 表面処理前の表面清浄度の評価、プラズマ処理の効果確認、離型被膜の評価な どに利用されています。

表面清浄度測定器コロナサーフ外観

下図はりん脱酸銅を #800 研磨紙で研磨した直後の測定から 241 日間放置によ ■ 測定データ例 る表面電位シフト dVO の変化を示します。表面電子シフト dVO はコロナ放電 電荷付与による表面電位のシフトを示します。自然酸化層の成長に伴う dV0 値 の負側から正側への推移が観察されます。

表面清浄度/什事関数 測定器 コロナサーフ[®] CORONASURF

■ 試験機仕様 下図は SUS 基板上の異なる汚染物質のコロナサーフによる Vi-dVO マップで す。洗浄後の清浄表面では同じ領域ですが、汚染種類により異なる場所特性 を示します。汚染材質により dV0 の解釈は異なります。

樹脂 離面力試験

AP TRIBOMETER, 引張試験機

樹脂 離面力試験

AP TRIBOMETER, 引張試験機

PA66 (ナイロン 66) 樹脂の離面力測定試験

■ 実験方法

AP TRIBOMETER の加熱ステージと荷重負荷機構を使って、評価試験片表面で PA66(ナイロン 66)樹脂を溶融付着させます。冷却後、引張試験機を用いて 樹脂と試験片表面の離面力を測定します。

試験に使用した試験機器

加熱ステージ上の樹脂ボールホルダー

60℃/min で 240℃まで加熱 25℃まで冷却

PA66 (ナイロン 66) 樹脂の離面力測定試験

■ 試験結果

無処理高速度工具鋼とセルテス X (Cr-N) コーティング品の比較では、無処理 と比べセルテスXで52%の離面応力低減が得られた。

試験片	接触面積	離面力	離面応力
無処理高速度工具鋼	11.9 mm ²	118.2 N	9.93 N/mm ²
セルテス X コート	11.2 mm ²	57.5 N	5.16 N/mm ²

離面力測定グラフ

の課題があります。

ご提案します。

近年の高機能樹脂材料では、型 汚れや離型性の向上が大きな課 題となっています。

コーティング不良解析サービス SEM, EDS, FIB-SEM など

ラマン分光による DLC 構造解析

顕微レーザーラマン分光分析

母材に含まれる鉛成分による不良

- 不良現象 DLC コーティング後に表面にクモリ状に見える微細な粒子が多数観察される。
- 分析方法 金属顕微鏡・SEM 観察ではわからなかった不良原因が欠陥部の FIB 加工後の SEM 観察・EDS 成分分析で明らかになった。
- ■不良原因 母材に含有される鉛成分が表面に露出していると、成膜プロセス中に真空中で 加熱された際に蒸発し、その上に異常な被膜が成長し粒子状に盛り上がってい ることがわかった。

欠陥の FIB 加工

欠陥の SEM 写真

欠陥の FIB 加工断面

母材中の鉛成分

ゴム手袋汚染による成膜異常欠陥

- 不良現象 樹脂成形金型への Cr-N 成膜品にポツ欠陥が発生する。SEM 観察 /EDS 分析によると欠陥は 20 ~ 30 µ m 大の中空球で除去後に下地表面には Ca,Na,K 等の汚染が見られた。
- 分析方法 金属顕微鏡・SEM 観察・EDS 成分分析
- ■不良原因 詳細メカニズムは不明だが特定のゴム手袋でのみ発生することから、手袋に使用されている添加成分の金型表面への付着によるものと考えられる。

中空球欠陥

変形中空球欠陥

中空球除去後の下地

各種 DLC 被膜のラマン分光 G ピーク特性マップ

■測定原理 物質にレーザー光を照射すると物質の分子構造によって決まる分子の振動エネルギー分だけシフトしたラマン散乱光が観測されます。DLC のラマンスペクトルを G ピーク(グラファイト結合に由来)と D ピーク(微細化したグラファイト結合)に波形分離し、G ピークのピーク位置と半値幅から DLC の構造を特定します。下図に示すように水素含有 DLC (a-C:H)や水素フリー DLC (ta-C)の DLC 構造を明確に分離し、硬さも推測することができます。

各種 DLC のラマン分光 G ピーク特性マップ

DLC(a-C:H)硬さのラマン分光Gピーク半値幅依存性

The second se		響振動)		C) ICE-T	turi	FRED FLOATNO UNER SINGLE	1	TRL 7-8		
Eネ大学 INSA == ⑤===		- A 1車エンジン・音			₹7.1-tulo	EM 2-2 EM 2-	思想でなっ			1
エンヌ ジャン	ストが参画 - 夕設計)	兇練技術者のチー ・機械工学・自動		てんてん	7.2.h±lid F.2.h±lid	SPUTTU STORE				104 1
(A) ・サンテチ Région Saint-ÉTIENNE unu-sourcese Saint-ÉTIENNE	なトライボロジンよびトライボメー	えて結成された熟 ジー・材料科学・	- 11	ベンチのライ	Sh-tula	TAUTSUL E/AL	-		279-	104000
	世界中の高名な (科学解析おJ	学問領域を超う (トライボロシ		テスト・	±3.4 €	ARTEMIS	taut -	TRL 2-3	1417741222 74	CC CANA AVOVE
	•	401° •					試験片のタイプ		エンジン サプアセンブリー	

エンジントライボロジーイノベーションカンターのご給ぐ フランス ICE-T 25 CICET

★官民パートナーシップ:HEFグループ・オーベルニュ-ローヌ-アルプ地域圏サンテチエンヌ市・フランス国立中央理工科学校リヨン校・国立応用科学院

鶾

雒